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The resonance line now cuts the P — [ plane at 45°, and the extrinsic
diffusion coefficient increases to

D, = D, ; cot® . (6.3.35)

Considering P as a parameter, and using (6.3.30), we find the component of
the oscillation center diffusion along I to be D, = D,. Comparing (6.3.35)
and (6.3.4)

D, = D** cos? . (6.3.36)

We note from Fig. 6.18a that D, is the diffusion coeflicient for the oscillation
center, projected along the libration direction. This shows the corresondence
between the point of view in Section 6.3a and in this subsection.

For many degrees of freedom, the corresponding transformations can also
be made, with the general transformation procedure having been described
under the rubric orthogonal metrics by Chirikov (1979).

6.4. Diffusion in Toroidal Magnetic Fields

An example of considerable importance for plasma confinement, which
exhibits both intrinsic and extrinsic diffusion, is that of particle motion in
toroidal magnetic fields. The diffusion can be either of the magnetic field
lines themselves, or of particles moving across the field lines. Of particular
interest is the case of particles diffusing across magnetic field lines in the
presence of both a wave field and extrinsic stochasticity (particle collisions
or noisy fields). For this case, depending on the relation between the wave
field, and the particle motion, there can be either diffusion in a single action,
governed by the restrictions discussed in Section 5.6b, or diffusion in two
actions, leading to the resonance streaming of Section 6.3. In Section 6.4a
we consider the basic processes of resonance island formation in toroidal
magnetic fields. In Section 6.4b we discuss qualitatively the effect of particle
drifts and the resultant extrinsic diffusion. We contrast the situation in which
the resonant island centers are fixed with the case in which the island centers
diffuse. In Section 6.4c we treat an example of the latter case, illustrating the
theory developed in Section 6.3b. In Section 6.4d we introduce the subject
of self-consistent motion, where the field driving the particle motion depends
in part on the particle motion itself.

6.4a. Magnetic Islands
Magnetic Field Configurations. The simplest toroidal magnetic field config-

uration is that produced by a long current-carrying conductor. (Here the
torus is in configuration space, rather than phase space.) This magnetic field
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Figure 6.19. Toroidal magnetic field configuration.

does not confine particles, due to drifts across field lines. However, the
addition of a toroidal current gives rise to a second field component, known
as a poloidal field, at right angles to the toroidal field. This results in a helical
field pattern around the torus as shown in Fig. 6.19. The field lines are similar
in structure to the trajectories for the two-dimensional oscillator, as given
in Fig. 3.1a. The complete conditions for the confinement and stability of a
plasma, which has collective modes of behavior, will not be considered here.
These conditions have led to a variety of current configurations, including
a rigid toroidal current-carrying conductor at the minor axis r = 0, together
with a vertical field (the levitron), an external helical conductor at r = a
around a physical torus (the stellarator), and a toroidal plasma current
centered on the minor axis (the tokamak).

For these configurations the equations of the magnetic field lines can be
put in Hamiltonian form (see, e.g., Morozov and Solov’ev, 1966; Rosenbluth
et al., 1966; and Freis et al., 1973). For configurations that have azimuthal
symmetry d/0y = 0 (the tokamak and levitron), the equations have the form
of a one-degree-of-freedom nonlinear oscillator, with the invariant being the
flux enclosed within a magnetic surface (see below for definitions of these
quantities). The breaking of this azimuthal symmetry effectively introduces
an explicit dependence of the “timelike” variable ¥ into the Hamiltonian,
and thus all the consequent complexity of a two-degree-of-freedom system.
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This includes the breakup of the magnetic surfaces into magnetic islands

with stochastic separatrix layers and, depending on the perturbation strength,
either local or global stochastic wandering of field lines.

Magnetic Surfaces. The equations of the field line are defined in (r, ¢, y)
coordinates by

B

r

= (6.4.1)

dr_rd¢ Rdy
Bcb Wy
where r and R = R, + r cos ¢ are the local minor and major radii of the
field line (see Fig. 6.19), and B,, B,, and B, are the three components of the
magnetic field. In these coordinates, B, and B, are poloidal field components
and B, is the toroidal field component. For a tokamak with B, = B, at

R = R,, the field can be approximated by (Solov’ev and Shafranov, 1970)

B <0, By(r) @), (6.4.2)
b h

s s

where h; =1+ (r/R,) cos ¢ gives the field strength variation from the
outside to the inside of the torus, and contains all the ¢ variation. In the
levitron a vertical field is required for the plasma equilibrium. This introduces
an additional ¢ dependence that is much stronger than the toroidally
produced variation. Neglecting the latter, B can be written as

B
B= <BU sin ¢, Bi + B, cos ¢, B0>, (6.4.3)
r

where B, is the vertical field (assumed upward in Fig. 6.19), and S relates
the ring current to the vertical current, § = I,/IxR,. The vertical field
weakens the poloidal field on the inside of the torus, giving a poloidal field
null (B, = 0) at ¢ = = for r = B,/fB,. If the field given by (6.4.2) or (6.4.3) is
substituted into (6.4.1), the field lines trace out a set of concentric surfaces
having toroidal symmetry and nested about the minor axis of the torus.
These are called magnetic surfaces. For the levitron field, a set of magnetic
surfaces in a Y = constant plane is shown in Fig. 6.20. Note the presence of
a magnetic surface with a separatrix, the x-point corresponding to the
poloidal field null.

As we shall see, the only quantity of importance in characterizing an
unperturbed magnetic surface is the value of the rotational transform
(angular frequency of ¢ per passage around the major axis)

2zn d

¢ = f —qﬁ dy = 2na, (6.4.4)
o dy

where « is the rotation number, as previously defined. For the tokamak, ,

tends to be near unity, with a small oscillatory component. We can obtain

an unperturbed Hamiltonian by introducing the canonical action variable

T
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Figure 6.20. Magnetic flux surfaces for the levitron projected onto a plane y = const.;
R, = 1 (after Freis et al, 1973).

= r?/2, and setting h; = 1. The equations of motion (6.4.1) are then
s oo
Dl - gl Op
which can be derived from the Hamiltonian

18
Hy()) = J «{) d{ = const., (6.4.5)
2n Jo
which is clf:arly in action-angle form. Similarly, for the levitron field, from
(6.4.3), setting B, = 1 for convenience,

Z.g =B sind,
oy a + B, cos ¢ =
L e

where z = /2n. Equations (6.4.6) can be derived from a Hamiltonian

H= %[In(%) - 2} + B,,\/Z cos ¢.

For this case, before we consider the perturbation, we must transform to
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action-angle variables, as in Section 1.2,

1 2n
Foout R (6.4.72)
2r J,
— 0S(J,
G (‘q 9 (6.4.7b)
aJ

where S is the generating function. Using perturbation theory as in Section
2.2 or 2.5 to second-order,

Wiy <Agt i 2) _2B2BJ — 3B (64.70)
oo

with a rotational transform .= dH,/dJ. A given value of . specifies a

particular magnetic surface for the unperturbed system. We emphasize that

with azimuthal () symmetry, the Hamiltonian for the magnetic field lines

describes a system with a single degree of freedom, and therefore the field

line trajectory is completely integrable.

From the above examples it is apparent that two-dimensional magnetic
fields have a Hamiltonian form. This follows from the divergence-free
property of the field as can be seen explicitly in x, y, z coordinates with no
z-variation

2B @B,
RS + %

= — =0. (6.4.8)
ox ay

The field line equations can then be written in Hamiltonian form

de B,  —éH dy B, @&H

dz B, = E’ dv B Oy
which satisfies (6.4.8). For field variation in three dimensions there is still a
Hamiltonian form for the field line equations, but the representation is not
as direct (Boozer, 1983, 1984).

Magnetic Islands. As a model for the magnetic field perturbation, we
consider an additional term in the Hamiltonian

H = Hy(J) + eH,(J, ¢, ¥) (6.4.9)

and expanding about the unperturbed orbits, J = J, + AJ and ¢ = (/2 +
A¢ (where J, = {, for the tokamak approximation), we obtain a pair of
perturbation equations of the form

d{YAI’;J =€ Z Amn COS(WZQ{) £ I’Zl// o+ lmn)’
e (6.4.10)
iAg 1 de
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where the 4,,, are the Fourier components of dH,/0¢. Choosing unperturbed
magnetic surfaces (or J,) such that the rotational transform gives a resonance
between the poloidal and toroidal field line motion

m¢ — ny = 27k, k integer,

than a transformation to a rotating frame, as in Section 2.4,

¢ =me —ny
gives the Hamiltonian for the perturbed motion
< Wt di AP 5
HBer O e iensd, (6.4.11)
2rdli2

where AJ = AJ/m. The half-width of the island separatrix is then, from
(24.31),

1/2

A0 Em
m | (1/2n)(dvyadJ)

As an illustration of island formation, a -dependent perturbation was
introduced into the levitron magnetic field by tilting the ring current (Freis et
al., 1973). Using (6.4.12) with the known value of 4, they compared the
perturbation result with exact numerical integration of the field line equations
(6.4.1). The agreement for the m=n=1 island (. = 2m), was excellent,
provided the perturbation did not exceed the threshold for global stochasticity.
For larger perturbation, the break-up into chains of secondary islands was
observed, as expected from the theory of Sections 2.4 and 4.3. In Fig. 6.21a
the theoretical (solid lines) and numerical (dots) island widths are given
showing the island forming on the inside of the « = 27 magnetic surface. The
banana shape of the island in physical space is evident. The local rotation
number around the island is & = 1/5.6, and second-order island structure is
not in evidence. In Fig. 6.21b the perturbation amplitude (ring tilt) has been
increased until the local rotation number o = % (the island number nearest
the elliptic singular point is 4). The theoretically predicted island has broken
up into four unstable second-order island clumps, and the long-time fieldline
motion is, in fact, stochastic. A second-order island calculation, as in Section
2.4b, reveals that the « = & and « = % islands overlap, leading to the observed
stochasticity.

The same form of the island perturbation was obtained for a helical
external current by Rosenbluth et al. (1966) and Filonenko et al. (1967); for
general current perturbations in tokamaks by Rechester and Stix (1976) and
Finn (1977); and for the m = n =1 mode helical current by Lichtenberg
(1984). For all of these cases, the perturbation acts directly on the magnetic
surfaces and breaks the resonant surfaces into finite width islands. For the
m=n =1 mode, the assumed single helicity perturbation emphasizes the
interaction that couples the helical mode to the m=1, n=0 toroidal

mn

(6.4.12)
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symmetry which generates second-order islands. The width of the stochastic
region surrounding the main island, due to overlap of second-order islands,
was compared to the numerically calculated stochastic width giving excellent
agreement. In these problems it is assumed that the charged particles in the
system follow the field lines exactly, and thus the finite Larmor radius of the
particles plays no role. Since we are considering a time-independent Hamil-
tonian in two degrees of freedom, the intrinsic diffusion resulting from island
overlap is that derived in Chapter 5, and diffusion along resonances is
absent.

For the problem of externally applied helical fields, using the stellarator
concept to achieve a plasma equilibrium, the applied fields generate magnetic
islands that are particularly severe near the outside of the plasma volume, as
analyzed originally by Rosenbluth et al. (1966) and Filonenko et al. (1967).
Since these fields are somewhat under the control of the machine designer,
the question can be asked whether the fields can be designed to increase the
plasma volume having good flux surfaces; ie., small islands and little
stochasticity. The obvious answer is to minimize those harmonic components
in the field that supply the principal contributions to the most harmful edge
islands. Because of the complexity of stellarator fields, and the lack of clear
identification of the most destructive islands, the procedures can be quite
complicated. Two related approaches have been developed to do this: Cary
(1982) varied components until the adjacent edge island pairs did not overlap
(good KAM magnetic surfaces exist); and Hanson and Cary (1986) used a
simpler procedure of examining the island residues. These results showed

that the plasma volume contained by good magnetic surfaces could be
increased by almost a factor of two.

6.4b. Drift Surfaces and Diffusion in Static Fields

Drift Surfaces. Finite temperature charged particles gyrating around magnetic
field lines in nonuniform magnetic or electric fields are not completely tied to
the field lines, but drift slowly across them. Fourier components of the
nonuniform field variation having the major radius periodicity can resonate
with Fourier components of the minor radius periodicity, leading to drift
surface islands. The drift equations for particle motion in a current-free field
are given by (see, e.g., Schmidt, 1979, Section 2.2)

e FxB. . B

L4} = U; 5 6‘4133

e oB ! ( )
ay, edm  pdl (6.4.13b)
dt Mds Maos’
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where e and M are the particle charge and mass,

Muv?
= —<,u - %X)VB — VO

is the force averaged over a gyro-orbit, u = $Mv? /B the magnetic moment, ®
the electric potential, v, the particle velocity along the field line, s the
coordinate along the field line, and r the guiding center position of the
gyrating particle. In the drift approximation, x is an adiabatic invariant and
is assumed to be well conserved (see Section 2.3b). If B and @ are not explicit
functions of time, then the motion is described by a reduced Hamiltonian
that is autonomous and has two degrees of freedom. In this case, the time
can be eliminated in favor of s as the independent variable by using

d
7 (®)=vy,

where v, is related to the constants of the motion u and E through the
relation

v :<2>1/2(E— B)'/2 (6.4.14)
St uB)'2, 4.

and E is the total energy. The resulting drift motion then occurs in a system
with two degrees of freedom, which is completely analogous to the magnetic
field line motion described in the previous section.

Nonresonant Motion. Consider first a magnetic field gradient alone. For
magnetic surfaces that have no ¢-variation (see Fig. 6.19), F is perpendicular
to the magnetic surface, and vy, as seen from (6.4.13), lies in the surface.
However, for toroidal fields of the levitron or tokamak type, the lack of ¢
symmetry gives rise to radial drifts. The time scale for this drift motion is
generally long compared to the time scale for motion along the field. Thus
neglecting high-order resonances, the radial motion can be described by a
one-dimensional autonomous Hamiltonian and is thus integrable.

There are two kinds of orbits depending on whether or not v < v,. For
v, < vy, particles are trapped on a field line near the outside of the torus
(¢ ~ 0) and bounce back and forth between high field regions located on
the inside of the torus. The drift motion then appears as a “banana” when
projected onto a i = const. plane. The width of the banana Ar at ¢ =0 is
proportional to the particle’s Larmor radius p, but enhanced by the ratio
of the major-to-minor radii of the torus

R\1/2
Ar = <~> Pr. (6:4.15)
{ &

a

The banana shape is similar to that seen in Fig. 6.21a except that it is thinner
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(because of the p; proportionality) and is on the outside of the torus. These
banana orbits exist on any magnetic surface for trapped particles (see
Solov’ev and Shafranov, 1970 for a complete discussion), and therefore do
not depend on resonances between the ¢ and Y motion.

For the case of passing particles, the particles drift on a surface that is
similar in shape to and within a distance + p, /. of the magnetic surface. The
orbits are just slightly perturbed versions of the magnetic surfaces.

Drift Islands. 1If we now allow B and ® to vary in both ¢ and V¥, passing
particles experience resonances between the ¢ and  motion that lead to
drift islands. For magnetic gradients, because of the p, dependence, these
drift islands are small compared to the magnetic islands arising from the
same perturbation. If a static electric field exists, such as a drift wave, with
Fourier expansion

® =) @, explimp — ny)],

then drift islands are formed due to resonance between the ¢ and Y motion.
The island widths are proportional to the potential and thus the drift islands
are formed independently of the amplitude of any magnetic islands that may
exist due to field line motion. A set of equations of the form of (6.4.10) can
then be obtained for the perturbed motion, with the Fourier amplitudes €A4,,,
proportional both to the Fourier coefficients of the potential ®,,, and to the
Larmor radius p,. This calculation was performed by Brambilla and
Lichtenberg (1973), to obtain an island half-width, analogous to (6.4.12) but
measured in physical space,

172
Ar=2<€q)'""R PL) . (6.4.16)
kT a dujdr

Here kT is the characteristic particle energy (k is Boltzmann’s constant and
T is the temperature).

Diffusion in Static Fields. The width of the resonant islands given by (6.4.16)
may be large compared to the width of the nonresonant banana motion
given by (6.4.15). Nevertheless, for static fields, the nonresonant bananas are
usually more important in giving rise to extrinsically driven diffusion. The
reason for this apparent contradiction is easy to see. For static potentials,
the resonant drift surface islands are centered on fixed magnetic surfaces,
maw, — nw,, = 0. Since wy/w, = dp/dy, a function of r alone, the locations
of the resonance centers are independent of v, and u. The diffusion arising
from weak interparticle collisions, which causes v, and yu to vary in a random
manner, is therefore of the type discussed in Section 5.6b. (If the drift islands
overlap, then the resulting intrinsic global stochasticity generally determines
the diffusion rate; however, because of the p, dependence in the island
amplitude, the islands rarely overlap, and we ignore intrinsic diffusion in the
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following argument.) For large but nonoverlapping islands, there is enhanced
diffusion across each island width. However, the overall diffusion rate is
limited to much smaller values by the nonresonant drift surfaces between
islands.

In contrast, the nonresonant banana orbits of the trapped particles exist
on any magnetic surface and are therefore not inhibited in this manner.
Collisional changes of v; and u scatter the particles from trapped to passing
orbits. Each such scatter either transfers the average radial particle position
from its instantaneous position on a passing orbit to the center of the banana
on a trapped orbit, or conversely. Depending on the collisionality, three
distinct types of behavior are observed when banana orbits are present.

1. For low collisionality, the particles step on the average a distance of a
banana width in the time it takes for v to diffuse across a resonance
width. Since this time is proportional to the collision time, the diffusion
rate is proportional to the collision frequency.

2. For intermediate collisionality, a resonant particle does not execute a
full banana oscillation before it is detrapped. The step size is thus reduced
to a fraction of a banana width. However nonresonant particles near the
separatrix now also have oscillations of order this step size, and thus
contribute to the overall diffusion. Furthermore the effective resonance
width is increased, and thus the time to diffuse across the resonance region
is also increased. Including the three effects of increased diffusion time,
increased fraction of particles, and decreased step size, the result is a
diffusion coefficient independent of collision frequency. This case is
therefore usually called the plateau regime.

3. For high collisionality, a fluid model must be used to calculate the
diffusion. The resulting value of Ar, the step size in the diffusion coefficient,
is enhanced by a factor of 1/ [see (6.4.4)] over the gyroradius, and the
consequent diffusion, known as “Pfirsch-Schliiter” diffusion, is again
proportional to collision frequency.

The characteristic step sizes in all cases are proportional to the Larmor
radius p; = v;/Q; thus the diffusion coefficient D has the classical scaling
D oc pf oc 1/B* and is therefore known as neoclassical diffusion. The reader
interested in detailed calculations of this process is referred to a review by
Galeev and Sagdeev (1979). As mentioned in Section 6.3a, these three regimes
also exist in resonance streaming problems.

6.4c. Time-Varying Fields

In this section we consider a problem related to neoclassical diffusion in that
the perturbed orbits are banana shaped and can exist on any magnetic
surface. However, the perturbation to be treated is resonant, and thus the
“bananas” are really islands whose widths can be strongly enhanced over
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those for neoclassical diffusion. The reason that these islands can exist on
any magnetic surface is the inclusion of a time variation in the potential.
This introduces another degree of freedom into the perturbed Hamiltonian
such that the energy E is no longer conserved. Thus one cannot eliminate
v, from the motion using (6.4.14), and the resonance condition becomes

mwy(r, vy) + nw,(r, v)) + lo =0,

where w is the frequency of the potential variation. This condition yields for
the location of a resonance center (with fixed m, n, and [)

r=r,, ).

If there is continuous extrinsic diffusion of v, then the resonance center will
continuously diffuse in r. The diffusion is thus an example of the resonance
streaming developed in Section 6.3 and can, in particular, be transformed
directly into the mapping form described in Section 6.3b.

If the potential arises from a field which is time varying, then the phase
of the potential for a particle position r is given by

0=kr— wt, (6.4.17)

where k is the wave vector and w the wave frequency. Within the drift
approximation the particle velocity is parallel to the field lines, i.e., drift
velocities are assumed slow compared to particle velocities. The rate of
change of phase is therefore given by

do

- kv, — o, (6.4.18)
where k| is the wavenumber parallel to the magnetic field. As described
above, the parallel particle velocity is no longer ignorable, and the resonance
center diffuses as v diffuses. This problem has been treated by Gell et al.
(1975) and in more detail by Nevins et al. (1979).

Construction of the Mapping Equations. We simplify the magnetic field
geometry by using rectangular coordinates with x corresponding to r. The
coordinate system used is shown in Fig. 6.22. Here k = k,p is a fixed
wavevector, and B(x) lies in the y — z plane with B, = 0 at x = 0. We define
the shear length Lg by

B =B.1
AX) = SR
y Ls
where for a torus Lg ' = (R/a)(d//dr). The component of k parallel to B is
then given by

X
TR

%)= 4.1
k(o) = ki - (6.4.19)

S
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Figure 6.22. The configuration of the model for calculation of resonance drift island
diffusion.

where to first order we set k, = k,. Taking the potential of the wave to be
of the form

® =, cos b, (6.4.20)
then (6.4.13a) and (6.4.13b) can be written in the form

dx ki :

i c oSN g, 6.4.21
& B ( )
dv) e ;
= " k,®, sin 6. 6.4.22
dt e : :

Equations (6.4.21) and (6.4.22), together with (6.4.18), describe the perturbed
motion in the absence of collisions. We assume that at a given x = x,
resonance occurs for a velocity vy, such that (6.4.18) becomes

kHOUHO — = O, (6.4.23)

where we have used the notation k(x,) = k| o. At resonance, with 6 = 0,
the particle motion is unperturbed by the potential. We follow the usual
procedure of considering the perturbed motion about resonance by linearizing
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x = X + Ax and v = v, + Av; to obtain

k
Ax = —=®, sin 6, (6.4.24)
B
. e . :
Ay = - kyo®o sin 6 + L. (6.4.25)
and
.
0= 5 v 0Ax + kyoAvy, (6.4.26)
S

where to obtain (6.4.26) we have expanded (6.4.19) about x = x, and inserted
this into (6.4.18). The dots are the total time derivatives. We have further
added to (6.4.25) the random velocity component { due to interparticle
collisions, such that, for collisions alone,

2
Uy

Avky = —t, (6.4.27)

c

where v, is the thermal velocity and «, is the collision time. A change in {
changes v, without changing x, and thus changes the resonance center of
the perturbed motion according to (6.4.23). We must therefore transform
our equations to the appropriate form to decouple the diffusive motion from
the resonance motion, as illustrated in Fig. 6.18, i.e., transform Eqgs. (6.4.24)—
(6.4.26) to the form of (6.3.28). To do this we introduce a new variable y for
which the dynamical part of (6.4.25) is eliminated. Multiplying (6.4.24) by
(e/M) kyo(B/k,) and subtracting this from (6.4.25), we have

Ay — ——Ax =C(. (6.4.28)

Defining y as

L Ax, (6.4.29)

we have a new form of (6.4.25) for the random motion alone
y=_ (6.4.30)

Solving (6.4.28) for Av in terms of y and Ax and substituting into (6.4.26),
we have

; k?
0 =kioy + 201 + S)Ax, (6.4.31)

5
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where S, here, is a parameter measuring the importance of the shear

W kJZ_ L‘{O

(6.4.32)
kH 0 Lb

When S « 1, shear is unimportant, and the island width is limited by the
ratio of k| to k, at a fixed position. When § > 1, the island width is limited
by the shear. A simple scale change in the variables now transforms (6.4.24),
(6.4.31), and (6.4.30) into the standard form of (6.3.28). Setting

kz
1="120(1 + $)Ax (6.4.33a)
ky
and
Pl (6.4.33b)
then
I =Ksin, (6.4.34a)
0.=1+P, (6.4.34b)
P (6.4.34c)
where
®
= k3021 + 8) & = (6.4.352)
& =kyof, (6.4.35b)

and we have defined v, by Mv2 = kT. The island width scales in the usual
manner as K'/2,

Diffusion Calculation. We are now in a position to calculate the resonant
diffusion in I, as in Section 6.3b. Using the definition of { from (6.2.25) and
(6.2.27) in (6.4.34c) with & given by (6.4.35b) we obtain

s kuoLT
T(.'
The diffusion coefficient is then
= P?
= <2t> - % ik (64.36)

Assuming that only resonant diffusion is important, then the diffusion, in I
space, is given as in (6.3.33) by

(D) =D,f,, (6.4.37)

where f, is the fra~tion of resonant particles. Taking the characteristic range
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of v to be vy, then the range of P, from (6.4.33), is k,v; and

KI,PZ
A (6.4.38)
kjovr
giving
2 (@6 2( 1
<D>:§k20u%(1+5)1f2(f9> <> (6.4.39)
i kT T

In terms of the physical variable Ax, the diffusion is obtained by substituting
the scaling from (6.4.32):

2 ipa
BBl <g‘DO> PL (6.4.40)
2k3o(1+ 8PP \kT) 1,

The result in (6.4.40) has been obtained by Nevins et al. (1979) in a different
manner in which the step length for diffusion is taken to be an island width,
as in the two degrees of freedom problem, and an effective collision time is

used
Utrap Z
Gies e et (6.4.41)

where vy, is estimated as

Voap =+ S)&.

1

However, the physical mechanism of resonance streaming is hidden in this
presentation. The exact numerical value of the diffusion is not obtained from
(6.4.40), because of the approximation of (6.4.38). The diffusion described by
(6.4.40) has sometimes been called pseudo-classical diffusion, as it has the
classical scaling D, o p} /., but is enhanced by a coefficient that depends on
the amplitude @, of a resonant perturbation.

Comparison of Analytical and Numerical Results. Nevins et al. (1979) com-
pared all of the scalings of (6.4.40) with computer simulations using the exact
equations of single particle motion and a Monte Carlo collision operator.
The code follows typically 500 to 1000 particles to obtain good statistics.
All of the scalings checked reasonably well, verifying the theory. Here we
reproduce only two of these results. In Fig. 6.23 the effect of the shear
parameter is studied by comparing the numerical results, labeled D*, with
the analytic formula for D, in (6.4.40), with a parameter inserted for best fit.
They find D* = 0.8D,, which is good agreement, although there are some
additional subtleties. In the limit S « 1, using a more exact transport theory
derived in the absence of shear, Nevins and co-workers compare the
numerical and analytic calculations of diffusion as a function of collision
frequency. In Fig. 6.24, we see a plateau regime (so-called because it is
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| T

Figure 6.23. The diffusion coefficient D* normalized to D, = p?/z, versus S, showing
the transition between the regimes of small and large shear. The quantities e®,/k7,
ky/k,, /kovy, and k, p, are held constant at 0.01, 0.03, 0.5, and 4.3 x 1073
respectively, while k, Ls is varied. The solid line is 0.8D,, with D, given by (6.4.40).

The horizontal error bars reflect the finite spatial resolution of the measured diffusion
coeflicient from the numerical simulation (after Nevins et al., 1979).

independent of v,) and an interesting transitional regime near v g /w, = 1,
where w, is the frequency of the resonant oscillation of x. The solid line is
the prediction of the more exact calculation for the banana regime without
shear. The plateau line can be determined by making the simple assumption
that for v > @, the distance a particle drifts in x between collisions, which
is the random step in the diffusion process, shortens with increasing
collisionality at just the rate to keep

WoTuss = 1. (6.4.42)
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Figure 6.24. Measured values of the enhancement in the diffusion coefficient nor-
malized to Dy = (kjvr)~ '(k,®o/B)* versus the collision frequency. The solid line is
given by D* = 1.3D, with D, given by (6.4.40). The dashed line shows the self-
consistent diffusion rate given by (6.4.43). The quantities e®y/kT, k| /k, , w/kjovr and
k, p, were held constant at 0.08, 0.2, 0, and 4.3 x 10~ 3, respectively. The vertical
error bars here represent fluctuations in D* from the numerical simulations (after
Nevins et al., 1979).

Using (6.4.42) with w, = K'/? obtained from (6.4.35a) and 7. from (6.4.41)
to substitute for 7, in (6.4.40), we obtain the result for the plateau region,
independent of ,

k2 (e(l)o>2
Dt p o (O 02 6.4.43
() K2 ¥k o P ( )

The result, obtained in the limit of no shear, agrees within a small numerical
factor with a kinetic theory treatment (Sagdeev and Galeev, 1969). We point
out, however, that the use of (6.4.42), while reasonable, is not within the
scope of the theory of oscillation center diffusion.
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6.4d. The Self-Consistent Problem

Diffusion in toroidal magnetic fields illustrates a very important factor in
many real problems, which has not explicitly been considered in this
monograph, that of self-consistent fields; that is, the fields within which
particles move may be generated in part by the collective motion of the
particles themselves. In this situation the Hamiltonian that determines the
dynamics is not a priori known. These problems have generally been attacked
by numerical simulation of the complete particle and field equations, as
illustrated below.

Tearing Modes and Disruptions in Tokamaks. For a tokamak device, as
described in Section 6.4a, the poloidal component of the magnetic field arises
from a toroidal current created by the plasma particles that are assumed to
be moving on regular flux surfaces. However, the plasma can be subject to
resistive tearing instabilities (e.g., White et al., 1977: Carreras et al., 1981),
which lead to helical perturbations of the current, i.c., a current having a
basic symmetry l¢ — n = const; [ and n integers. These perturbations
break the azimuthal symmetry, and the harmonics of the perturbation appear
as islands on the rational surfaces. With cylindrical symmetry a single helical
mode would result in a single resonant island; it would therefore not lead
to island overlap and stochasticity. However, the inclusion of toroidal effects
adds new major resonances. For example, a primary helically excited mode
with [ = 2, n = 1 excites a major two-island structure on the . = 7 magnetic
surface. The toroidal symmetry adds a significant component of a three-
sland structure on the . = 2n/3 rational surface. These rational surfaces
commonly occur within the plasma of tokamaks, with consequent large
magnetic islands that affect the plasma motion. In Fig. 6.25 the magnetic
surface structure is shown arising from the numerical simulation of a
saturated [ = 2, n = 1 mode, giving rise to the « = 7 resonant islands. The
oupling through the toroidal terms also gives rise to resonant islands on
he « = 2n/3 rational surface. Despite the large island size, little stochastic
vandering of field lines was found in this case. However, if an [ = 2, n = 2
welical mode is also present, then large regions of stochasticity are observed.
[he evolution of two such modes has been followed by numerical simulation,
ntegrating the self-consistent field and particle equations, to obtain the result
hown in Fig. 6.26. In the first frame the . = 7 and « = 27/3 islands are clearly
cen. In the second frame the interaction between the current components
f the [=2, n=1 and [ =2, n=2 symmetries has led to stochastic
vandering of most of the field lines near the « = 7 island chain. In the third
rame the interaction has spread to engulf the « == 271/3 island. The resulting
Irastic modification of the original helical current pattern has led to the
lestruction of the central flux surfaces in the fourth frame. The abrupt change
n the current distribution, as the islands overlap, is thought to be the cause
f current disruptions in tokamaks.
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Figure 6.25. Magnetic field line plot showing a saturated 2/1 magnetic island and
its 3/1 toroidal satellite (after Carreras et al., 1981).

6.5. Many Degrees of Freedom

There has been considerable interest in understanding systems with a large
number of degrees of freedom. The motivation, on one hand, has been
concerned with the behavior of nonlinear partial differential equations, and,
on the other, with the relation to the statistical mechanics of the many-body
problem. In Section 6.1a we have formally considered a many-dimensional
system within which a particular set of resonance surfaces can be singled out
for study. A single, many-dimensional resonance has a simple resonance
width, defined in the proper coordinates, and this width may be projected
onto any single action of the multidimensional system. This geometric
interpretation was developed further in Section 6.3, and mathematical details
of the coordinate transformations to exhibit the resonance locally can be
found in Chirikov (1979). From this perspective the question of a large
number of degrees of freedom appears to resolve itself into the question of
whether the density of important resonances, as projected onto a single
action, increases faster than the widths of the resonances decrease, as the
system energy is spread over more degrees of freedom. If this happens, then
we would expect resonance overlap and strongly chaotic motion to occur
for N degrees of freedom, as N — 0.




